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the size of the microchannel also affecting the transition from 
one flow regime to another. 

CONCLUSION 

The single-phase forced convective heat transfer charac- 
teristics of water flowing through microchannels with a rec- 
tangular cross-section were investigated experimentally. The 
experimental results indicate that the liquid convection 
characteristics are quite different from those observed in 
conventionally sized channels. The conversions of flow 
modes and heat transfer regimes are initiated at much lower 
Re than for the conventional situation. The transition from 
the laminar flow regime occurs at Re of approximately 300, 
and the transition to the fully turbulent flow regime at about 
Re = 1000. The transitions are influenced by liquid tem- 
perature, velocity and microchannel size. 

Transition and laminar heat transfer in microchannels are 
significantly different from those of liquid flowing through 
conventionally sized channels, and are considerably more 
complicated. The range of the transition zone, and the heat 
transfer characteristics of both the transition and laminar 
flow regimes, are strongly affected by the liquid temperature, 
liquid velocity and microchannel size, and, hence, are not 
only determined by Re. Evidence was presented to support 
the existence of an optimum channel size in terms of the 
forced convective flow heat transfer of a single-phase liquid 
flowing in a rectangular microchannel. 
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1. INTRODUCTION 

A precise knowledge of the subcooled flow boiling curve is 
essential in many engineering applications, which include 
research fission and fusion reactor components, high-power 
synchrotron and optical components, and advanced elec- 
tronic components. Such examples are characterized as high 
heat flux (HHF) applications, which can be accommodated 
by few other means except subcooled flow boiling. Accurate 
subcooled flow boiling conditions are usually represented by 
the boiling curve, which describes the relationship between 

the applied heat flux and the wall temperature or wall super- 
heat, and hence the heat transfer coefficient for the given 
flow conditions. Complete and accurate representation of 
this curve for HHF applications requires the identification 
and characterization of various flow regimes and transition 
boundaries. Although much work in characterizing the boil- 
ing curve at low heat flux levels has been completed, there 
are still many uncertainties and inaccuracies in HHF appli- 
cations. 

The objective of this work is to improve the present ability 
to predict local (axial) heat transfer in the subcooled flow 
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NOMENCLATURE 

Bo boiling number, g"/Gifg 
D inside', diameter [m] 
G mass velocity [kg m-2 s-~] 
h heat transfer coefficient [W m 2 °C ~] 
hsp single-phase heat transfer coefficient [W 

m-2 ~C-I] 
ifg latent heat of vaporization [J kg '] 
L heated length of channel [m] 
Nu Nusselt number 
/'exit exit pressure [MPa] 
Pr Prandtl number 

q" 

St  
T~(Z) 
T~t 
Tw(Z) 
AT~a, 
Ar~ub 
X 
x* 
Z 

heat flux [W m -2] 
Stanton number [Nu Re-~ Pr  -~] 
local bulk temperature [°C] 
saturation temperature [°C] 
local wall temperature [°C] 
wall superheat, ( T . -  Tsat) [°C] 
subcooling, (T,~t-Tb) [°C] 
quality 
quality at the location where Tw = T~t [5] 
axial coordinate [m]. 

boiling regime for the case of uniformly heated coolant chan- 
nels operating anywhere between the single phase (SP) to the 
fully developed boiling (FDB) regimes. The present results 
will be useful for both heat transfer research and industrial 
design. For  example:, the composite subcooled flow boiling 
correlation discussed below may be applicable to any sub- 
cooled flow and any fluid, as long as graviational effects are 
not important;  i.e. when the Froude number, 
Fr = G2/gp~D, is greater than 50.0. Later refinements may 
result in the application of  the results to non-uniformly 
heated geometries. 

2. MODEL DEVELOPMENT 

There have been many investigations of  subcooled boiling 
[1-16], and there have been many correlations given for 
each regime in the subcooled nucleate boiling region. Using 
selections from this previous work, an initial composite 
nucleate subcooled boiling model [10] was proposed. 
Petuhkov's [15], Shah's [16], and Kandlikar's [5] correlations 
were essential in the development of the initial model. 

The present work focuses on an approach to improve the 
initial model. The present model is called the modified model 
and is based on mcdification of the "initial" model. Both 
models are based on improved predictions in the partial 
nucleate boiling (PB) regime by using the following com- 
monly used (e.g. Kandlikar [5]) interpolation function 
between the SP and FDB regimes : 

q;B = a + b A Z ~ t  (1) 

where q" is the heat flux and ATilt is the wall superheat. The 
conditions for determining a, b, and m are 

(i) q~;B = q~e when Tw = T~,t (2) 

(ii) q~;B = q~FDB when ATsat, Pa = ATsat, OFDB (3) 

and 

t~q~B Oq~VDB 
(iii) - - - -  at OFDB 

t?A T~at OAT~t 

where OFDB represents the onset of  fully developed boiling. 
These conditions, when applied to equation (1), result in 

the following new forms, as compared to the form given in 
refs. [5, 10], for the parameters a, b, and m : 

a = hsp(Tw = T~,)AT~uo 

b -  m q~FDB--a 

A T~t, OFDB 

e = 1 -- hse (8) 
FoB F 2 f~ OFDB 

x 
f = + X  X = - -  (9) 

' X* 

x* q" cp~ Bo 
hspilg S l  (10) 

1 
Of~ 115BO°o~DB q~ro~ for Bo > 3.0 × 10 -5 

gl = ~q,, = 05 1 
23 BOrFDB q,rFD a for Bo <<, 3.0× 10 -5 

( l l )  

andf~ was given by Shah [16]. Notice again from the above 
that m, a, and b are functions of  q" but no assumptions or 
curve fits were needed to adjust these parameters for an 
optimal data fit. In the above, all thermophysical properties 
should be evaluated at the local film temperature. This cor- 
relation was intended to increase the magnitude of  the heat 
transfer coefficient relative to the values predicted by the 
"initial" model [10]. In addition, this modified correlation 
provides a better approximation for the asymptotic limit for 
the partial nucleate boiling region as ATilt decreases, and 
does not require prediction of  the onset of  nucleate boiling. 
The onset of  fully developed boiling was evaluated in the 
usual manner, as suggested by Forster and Grief [13], and 
requires qovoB = 1.4q~, where q~ is the heat flux at the inter- 
section of single-phase and fully developed boiling curves. 

3. RESULTS 

Flow boiling predictions were made of  the local (axial) 
heat transfer cofficient for water data taken from Boyd [11, 
12]. The range of flow parameters and the comparison 
between the predicted and measured local (axial) heat trans- 
fer coefficient are shown in Fig. 1. 

(4) Figure 1 shows comparisons of  predictions with the data 
near the heated channel exit (Z = 28.66 cm), the heated 
midsection (Z = 14.59 cm), and the inlet (Z = 0.317 cm) for 
exit pressures of  1.66 and 0.77 MPa. In each case, com- 
parisons with the data are encouraging. Using 185 data 
points, the "modified" model had the best predictions at 
Pex~t = 1.66 MPa, with an overall percent standard deviation 

(5) of  12.5% compared to 13.7% for the "initial" model. 
However, at a 0.77 MPa exit pressure, the overall percent 

(6) standard deviation increased to 19.0% for the "modified" 
model, and that for the "initial" model increased to 18.6% 
for 169 data points. For most cases, the predictions were best 
at the channel exit (i.e. Z = Z3 = 28.66 cm), and worse at 

(7) other locations. The increased scatter in the comparison at 
m m 

q~FDB--a 
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Fig. 1. Local (axial) subcooled flow boiling curve heat trans- 
fer coefficient comparisons between the modified correlation 
and Boyd's [11, 12] water data for a flow channel diameter 

of 3.0 mm, and a heated length-to-diameter ratio of 96.6. 

low values of Z is clearly evident in the figure. As shown for 
upstream locations, the predictions were below the exper- 
imental data. This is due primarily to : (1) the heat transfer 
being thermally developing at upstream locations; and (2) 
the fact that the limiting condition used to match the single- 
phase and the partial boiling regions must be replaced with 
a better estimate for the asymptotic limit. An examination 
of whether a better estimate for the asymptotic limit will 
result in better predictions of the wall temperature at a given 
heat flux was made by comparing the "initial" and "modi- 
fied" models with data in terms of the power (or heat flux) 
as a function of the wall temperature (or superheat). The 
results revealed that the "modified" model shifts the pre- 
dictions upwards towards the data in all cases. This dem- 
onstrates that a more accurate asymptotic limit would 
improve the predictions in the partial nucleate boiling region. 
This improved correlation results in both the slope and the 
shape of the boiling curve changing, not only with the power 
level and flow regime, but also with the local bulk tempera- 
ture, local quality, and mass velocity. When more of these 
local characteristics are included, the accuracy improves. 

4. C O N C L U S I O N S  

Like many previous correlations, the present model is an 
interpolation correlation. However, unlike many previous 
correlations, the present correlation requires no data fitting 
empirical parameters, which must be adjusted for an accurate 
data fit. Hence, no a priori assumptions were used for the 
value of parameters a, b, and m, whose form appears to be 
fluid-independent, but direct functions of q", G, Tsar, D, L, 
and the thermophysical fluid properties. For the 365 data 
points used in the comparison, the percent standard devi- 
ations were 12.5% at 1.66 MPa and 19% at 0.77 MPa, 
respectively. This work will be expanded to include: (a) 
comparisons of the correlation with an expanded data base 
for different fluids (e.g. refs. [7, 9]); and (b) adapting the 
correlation to circumferential predictions for single-side heat 
flux boundary conditions. 
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